On the Validity of Covariate Adjustment for Estimating Causal Effects
نویسندگان
چکیده
Identifying effects of actions (treatments) on outcome variables from observational data and causal assumptions is a fundamental problem in causal inference. This identification is made difficult by the presence of confounders which can be related to both treatment and outcome variables. Confounders are often handled, both in theory and in practice, by adjusting for covariates, in other words considering outcomes conditioned on treatment and covariate values, weighed by probability of observing those covariate values. In this paper, we give a complete graphical criterion for covariate adjustment, which we term the adjustment criterion, and derive some interesting corollaries of the completeness of this criterion.
منابع مشابه
Adjustment Criteria in Causal Diagrams: An Algorithmic Perspective
Identifying and controlling bias is a key problem in empirical sciences. Causal diagram theory provides graphical criteria for deciding whether and how causal effects can be identified from observed (nonexperimental) data by covariate adjustment. Here we prove equivalences between existing as well as new criteria for adjustment and we provide a new simplified but still equivalent notion of dsep...
متن کاملThe Application of Recursive Mixed Models for Estimating Genetic and Phenotypic Relationships between Calving Difficulty and Lactation Curve Traits in Iranian Holsteins: A Comparison with Standard Mixed Models
In the present study, records on 22872 first-parity Holsteins collected from 131 herds by the Animal Breeding and Improvement Center of Iran from 1995 to 2014 were considered to estimate genetic and phenotypic relationships between calving difficulty (CD) and the lactation curve traits, including initial milk yield (Ap), ascending (Bp) and descending (Cp) slope of the lactation curves, peak mil...
متن کاملتورش روشهای آنالیز استاندارد در برآورد اثرات علیتی
Standard methods for estimating exposure effects in longitudinal studies will result in biased estimates of the exposure effect in the presence of time-dependent confounders affected by past exposure. In the present review article, we first described the assumptions required for estimating the causal effect in longitudinal studies and their structure regarding various types of exposure and ...
متن کاملCombining machine learning and matching techniques to improve causal inference in program evaluation.
RATIONALE, AIMS AND OBJECTIVES Program evaluations often utilize various matching approaches to emulate the randomization process for group assignment in experimental studies. Typically, the matching strategy is implemented, and then covariate balance is assessed before estimating treatment effects. This paper introduces a novel analytic framework utilizing a machine learning algorithm called o...
متن کاملDAGitty: a graphical tool for analyzing causal diagrams.
Johannes Textor, Maciej Liskiewicz Identifying and controlling bias is a key problem in empirical sciences. Causal diagram theory provides graphical criteria for deciding whether and how causal effects can be identified from observed (nonexperimental) data by covariate adjustment. Here we prove equivalences between existing as well as new criteria for adjustment and we provide a new simplified ...
متن کامل